

# 基质辅助激光离子化飞行时间质谱仪

应用文集 No. 1



# 测定原理和生物样品的分析实例

- 1. 要点
- 2. 由 MALDI 进行离子化的原理
- 3. 由 TOF 进行质量分离的原理
- 4. Pulsed Extraction 的原理
- 5. 线性方式的分析
- 6. Reflectron 方式的分析
- 7. 由 PSD 进行分析(MS/MS)

#### 1. 要点

AXIMA-CFR 其特长不仅仅是具有高分辨率、高灵敏度及高精度,而且可根据 CFR 进行 PSD 分析的飞行质谱仪。本数据集简单介绍 MALDI-TOF MS 的原理以及使用 AXIMA-CFR 获得的数据。

## 2. MALDI(基质辅助激光离子化)的原理

图 1 显示了 MALDI(基质辅助激光离子化)的原理,在样品板上将样品与基质溶液混合后使其干燥。 然后,在其结晶上采用脉冲激光(氮激光,波长 337nm)照射,基质吸收激光能量并将能量传导给样品, 该能量使样品产生离子化。

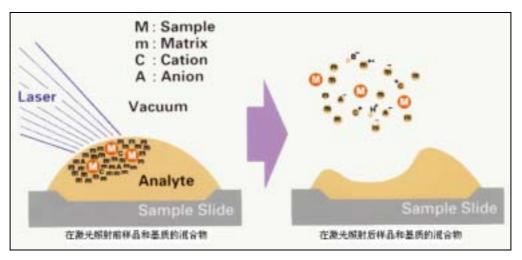



图 1: MALDI 的原理

#### 3. TOF 进行质量分离的原理

已经离子化的样品被栅极(Grid)间的加速电压所加速,被加速的离子被飞行检测器检测出其飞行距离 (Drift Space)。这时,质量电荷比(m/z)小的分子提前到达检测器,而质量电荷比大的分子则延迟到达检测器,这样质量便被分离了。

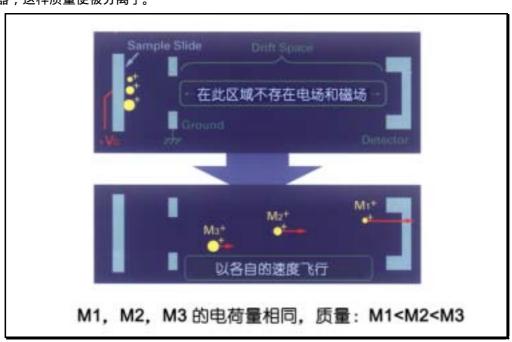



图 2:描述了 TOF 进行质量分离的原理图

# 4. 脉冲萃取(Pulsed Extraction)的原理

样品在激光照射后延迟、形成离子化。其后,由于某些时间离子继续生成而形成固定的时间分布,如图 3-(1&2)。从前离子加速由于采用施加加速电压,而造成离子分布时间扩大、分辨率下降的原因。 Pulsed Extraction是在离子生成时间段保持不加速状态,而在适当的时刻,瞬间施加加速电压,让已生成的离子同时加速如图 3-(3)。此项功能可以在短时间的状态下让离子群飞行,实现高分辨率的测定。

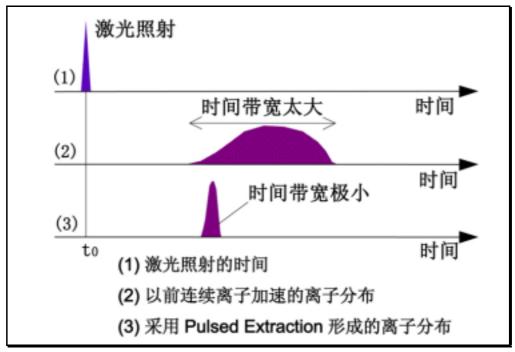



图 3: 从离子源出来后的离子分布

# 5.线性方式(Liner Mode)分析

线性方式是将已经离子化的样品施加加速电压,利用在其飞行直线上的检测器检测的最单纯的检测方式,如图 2 所示。如图 4 显示了采用 AXIMA-CFR 分析胰岛素β链(Insulin  $\beta$  chain)的质谱图。即使在线性方式进行分析,胰岛素β链的同位体分布也被检测出来,其分辨率约为 6,000。

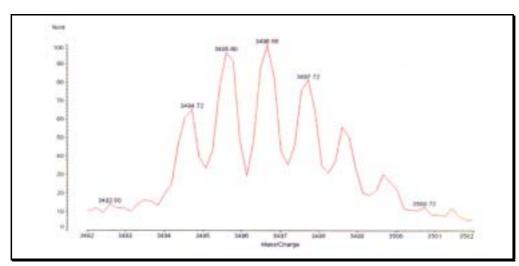



图 4:在线性分析方式下胰岛素β链分析

在图 5 显示了分析 β-乳球蛋白 A(β-Lactoglobulin A)和β-乳球蛋白 B(β-Lactoglobulin B)混合物分离的质谱图。β-乳球蛋白 A 的分子量约为 A 18,280、A-乳球蛋白 A 的分子量约为 A 18,360,在分子量为 A 18,000 其分子量差为 A 80 的情况都被明确地分离。而且,此时的分辨率为 A 1,800。

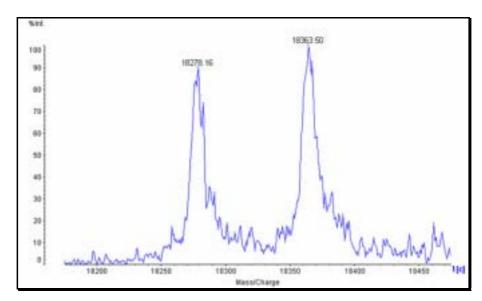



图 5:在线性方式下β-乳球蛋白 Α 和β-乳球蛋白 Β 混合物的分析

图 6 显示分析对 500 a mol 的牛胰岛素(Bovine insulin)分析的质谱图。对如此微量样品,同样可以进行高灵敏度的分析。

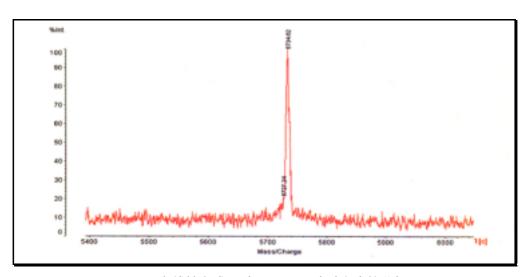



图 6:在线性方式下对 500 amol 牛胰岛素的分析

## 6. 反射方式(Reflectron Mode)的分析

反射方式(Reflectron Mode)是在离子化后施加加速电压飞行后,沿离子群飞行方向施加反向电场,检测折返离子群的分析方式,如图 7 所示。由于施加与飞行反方向的电场,可进一步收缩离子群的时间分布,同时延长飞行距离,可进行比线性方式更高分辨率的分析。

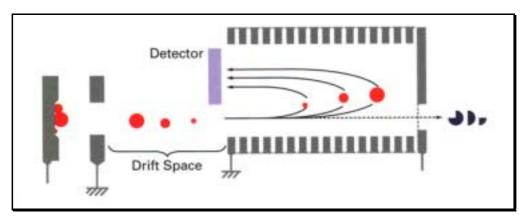



图 7: 反射方式分析的原理图

图 8 显示了 AXIMA-CFR 在反射方式分析羊胰岛素(Sheep insulin)、牛胰岛素(Bovine insulin)、猪胰岛素(Porcine insulin)和人胰岛素(Human insulin)以及混合物分离的质谱图,图 9 显示了图 8 中各种胰岛素放大的质谱图。这样,分子量在 5,700~5,800 之间峰通过同位体分离被检测出来。此时,各种胰岛素峰的分辨率达 15,000 以上。

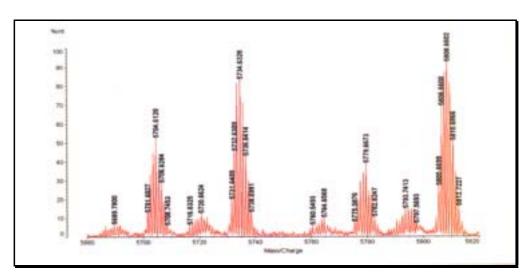



图 8:采用反射方式分析各种胰岛素以及混合物分离的质谱图

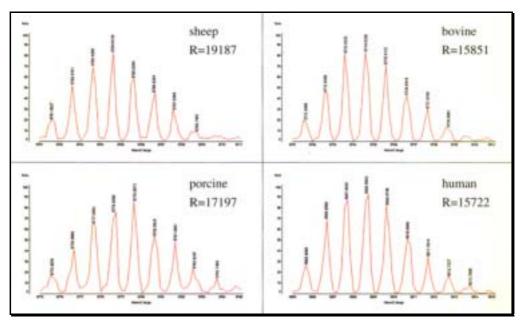



图 9: 各种胰岛素放大的单个质谱图

表 1 为选定图 8 中人胰岛素 5,808.6602 (m/z)和羊胰岛素 5,704.6128 (m/z)的峰作内标,计算各个 峰与理论值之间的误差,结果各峰的误差平均为 2.7ppm。

表 1: 内标法质量校正精度 Mass

| species | MH+ exp.  | MH+ theor. | difference | ppm  | species | MH+ exp.  | MH+ theor. | difference | ppm  |
|---------|-----------|------------|------------|------|---------|-----------|------------|------------|------|
| sheep   | 5701.6027 | 5701.6027  | 0.0000     | 0.01 | porcine | 5775.6562 | 5775.6395  | 0.0167     | 2.88 |
|         | 5702.6181 | 5702.6061  | 0.0120     | 2.11 |         | 5776.5969 | 5776.6429  | -0.0460    | 7.96 |
|         | 5703.6266 | 5703.6094  | 0.0172     | 3.01 |         | 5777.6562 | 5777.6462  | 0.0100     | 1.72 |
|         | 5704.6128 | 5704.6128  | Calibrant  |      |         | 5778.6369 | 5778.6496  | -0.0127    | 2.20 |
|         | 5705.6264 | 5705.6161  | 0.0103     | 1.80 |         | 5779.6249 | 5779.6529  | -0.0281    | 4.86 |
|         | 5706.6284 | 5706.6195  | 0.0089     | 1.56 |         | 5780.6624 | 5780.6563  | 0.0061     | 1.06 |
|         | 5707.6364 | 5707.6228  | 0.0136     | 2.38 |         | 5781.6861 | 5781.6596  | 0.0265     | 4.58 |
| bovine  | 5731.6489 | 5731.6133  | 0.0356     | 6.21 | human   | 5805.6699 | 5805.6501  | 0.0198     | 3.41 |
|         | 5732.6309 | 5732.6167  | 0.0142     | 2.48 |         | 5806.6600 | 5806.6535  | 0.0065     | 1.13 |
|         | 6733.6232 | 5733.6200  | 0.0032     | 0.56 |         | 5807.6625 | 5807.6568  | 0.0057     | 0.98 |
|         | 5734.6328 | 5734.6234  | 0.0094     | 1.65 |         | 5808.6602 | 5808.6602  | Calibrant  |      |
|         | 5735.6132 | 5735.6267  | -0.0135    | 2.36 |         | 5809.6746 | 5809.6635  | 0.0111     | 1.91 |
|         | 5736.6414 | 5736.6301  | 0.0113     | 1.98 |         | 5810.6866 | 5810.6669  | 0.0197     | 3.40 |
|         | 5737.6759 | 5737.6334  | 0.0425     | 7.41 |         | 5811.7014 | 5811.6702  | 0.0312     | 5.37 |

图 10 表示采用反射方式分析 500 amol 血管紧缩素 (Angiotensin )的质谱图。在反射方式下进行高灵敏度的分析。

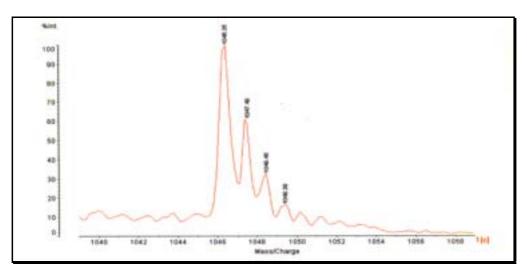



图 10:500 amol 血管紧缩素 的质谱图

图 11 表示蛋白质的酶消解混合物的质谱图,上面一行是各个峰放大的质谱图。由此可见,各种各样的峰经过同位体分布的分离处理,可以在宽阔的质量范围内被进行高分辨率的检测。



图 11:蛋白质的酶消解物的分析

#### 7. 采用 PSD 进行 MS/MS 分析

采用 MALDI 进行分析时,通常可以通过提高激光的功率,检测出碎片离子。Precursor Ion 在提高激光功率的情况下,其离子化变得不稳定,在被加速电压加速后进入飞行区域进一步分裂,生成碎片离子继续等速飞行,其不能在线性方式分析,在反射方式由检测折返可被分离。如图 12 所示,在 AXIMA-CFR,由于采用了独特的曲线区域反射结构(Curved Field Reflectron,CFR)技术,不需要根据碎片离子的质量,而改变反射电场,一次分析就可以检测出全范围内的碎片离子。



图 12: Curved Field Reflectron 的 PSD 原理

而且,可以根据使用离子门 (Ion Gate)功能,从生成离子中选择 Precursor Ion,进行 MS/MS 分析。如图 13 表示采用 MALDI-TOF MS 进行 MS/MS 分析的原理。生成的离子 M1、M2 和 M3 被加速电压加速。在通过离子门时,因不同的离子会产生时间差。控制离子门只允许目标离子(M2)通过。通过离子门的离子(M2) 在飞行区域被分裂形成碎片离子。根据该碎片离子在反射方式折返的情况,就可以检测出在所生成的全质量范围的碎片离子。

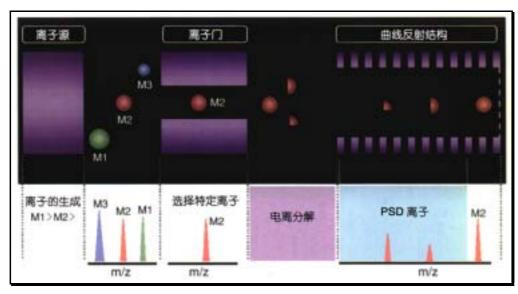



图 13: MALDI-TOF MS 的 MS/MS 原理

如图 14 表示由 AXIMA-CFR 处理的血管紧缩素 (Angiotensin )PSD 质谱图,而且在图 15 显示了在图 14 的碎片离子放大质谱图。利用血管紧缩素 的 PSD 质谱图将碎片离子分离成同位体检测出来。

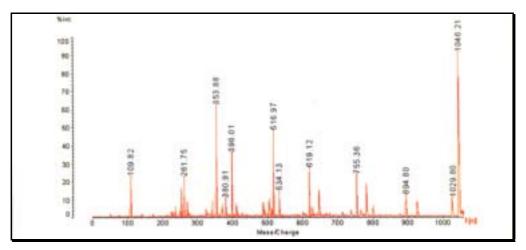



图 14:血管紧缩素 的 PSD 质谱图

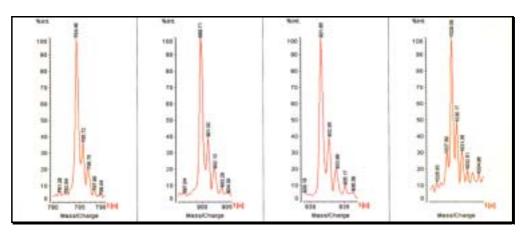



图 15:碎片离子放大的质谱图

图 16 显示了 100fmol 的胰岛素β链的 PSD 质谱图,图 17 显示了 5fmol 的血管紧缩素 的 PSD 质谱图,可见如此微量的多肽也可以检测出碎片离子。

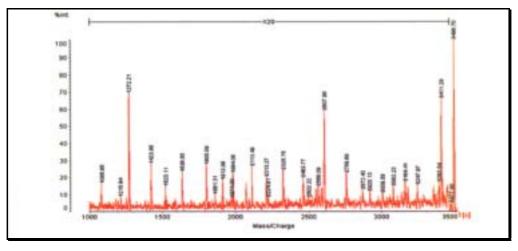



图 16:100fmol 的胰岛素β链的 PSD 质谱图

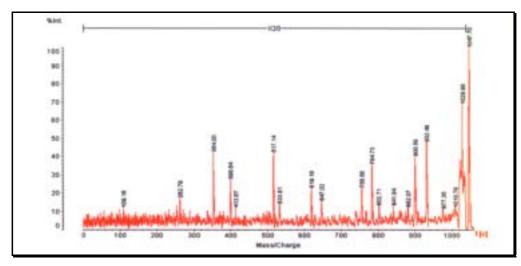



图 17:5fmol 的血管紧缩素 的 PSD 质谱图

图 18 显示了在使用 AXIMA-CFR 的离子门前后的质谱图,上图为未使用离子门的质谱图,检测出在 1,419.05 和 1,426.91 两个峰;下图是针对各个峰使用离子门而获得的质谱图;相邻近(约 8 道尔敦)的峰也具有很高选择性,通过适当的选择 Precursor Ion 来实现高分辨率。

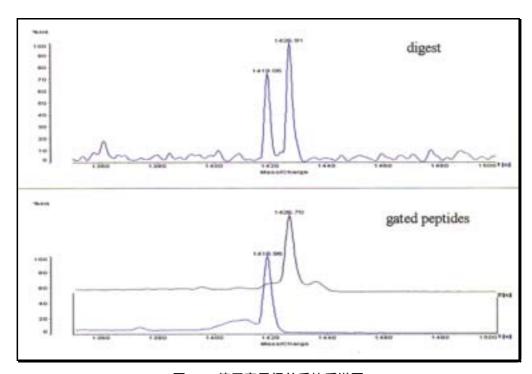



图 18:使用离子门前后的质谱图